We offer a top quality and accurate intelligence test that goes beyond any other known test. It has been developed to measure up to ten cognitive capabilities and it has been adapted respectfully for ...
IQ to Percentile Conversion

IQ tests are designed and updated on a regular basis such that they correspond to the populations they measure in a precise way: a score of 100 is the average score of the population and the distribution of IQ scores has a normal shape with a standard deviation of 15. Therefore, the IQ score is convenient to interpret and work with if you are a statistician, but if you are not into statistics the number itself will likely mean little to you. This is where our IQ percentile calculator can assist you in computing both the percentile of the population you are in and, correspondingly, the rarity of your score.
The Basics of IQ Score Interpretation
The table below provides IQ to percentile conversion formula. There are three different standard deviations used to IQ measurement: standard deviation of 15 (e.g. Wechsler scale), SD16 (e.g. Stanford-Binet scale) and less frequently used SD24 (e.g. Catell scale). Please note that IQ of 196 with SD15 represents one person out of 12 billion. This translates to an IQ of 202 on SD16 and IQ of 253 on SD24. So if an online IQ tests claims your IQ to be more than 200, it is probably not accurate.
IQ Percentage and Rarity Chart
IQ SD15 | IQ SD16 | IQ SD24 | Percentile | Rarity 1/X |
---|---|---|---|---|
196 | 202.4 | 253.6 | 99.999999992 | 12812462045 |
195 | 201.3 | 252.0 | 99.999999988 | 8299133761 |
194 | 200.3 | 250.4 | 99.999999981 | 5399067340 |
193 | 199.2 | 248.8 | 99.999999972 | 3527693270 |
192 | 198.1 | 247.2 | 99.999999957 | 2314980850 |
191 | 197.1 | 245.6 | 99.999999934 | 1525765721 |
190 | 196.0 | 244.0 | 99.999999901 | 1009976678 |
189 | 194.9 | 242.4 | 99.999999851 | 671455130 |
188 | 193.9 | 240.8 | 99.999999777 | 448336263 |
187 | 192.8 | 239.2 | 99.999999667 | 300656786 |
186 | 191.7 | 237.6 | 99.999999506 | 202496482 |
185 | 190.7 | 236.0 | 99.999999270 | 136975305 |
184 | 189.6 | 234.4 | 99.999998925 | 93056001 |
183 | 188.5 | 232.8 | 99.999998425 | 63492547 |
182 | 187.5 | 231.2 | 99.999997702 | 43508721 |
181 | 186.4 | 229.6 | 99.999996660 | 29943596 |
180 | 185.3 | 228.0 | 99.999995168 | 20696863 |
179 | 184.3 | 226.4 | 99.999993040 | 14367357 |
178 | 183.2 | 224.8 | 99.999990017 | 10016587 |
177 | 182.1 | 223.2 | 99.999985742 | 7013455 |
176 | 181.1 | 221.6 | 99.999979724 | 4931877 |
175 | 180.0 | 220.0 | 99.999971290 | 3483046 |
174 | 178.9 | 218.4 | 99.999959521 | 2470424 |
173 | 177.9 | 216.8 | 99.999943173 | 1759737 |
172 | 176.8 | 215.2 | 99.999920565 | 1258887 |
171 | 175.7 | 213.6 | 99.999889436 | 904454 |
170 | 174.7 | 212.0 | 99.999846766 | 652598 |
169 | 173.6 | 210.4 | 99.999788536 | 472893 |
168 | 172.5 | 208.8 | 99.999709421 | 344141 |
167 | 171.5 | 207.2 | 99.999602410 | 251515 |
166 | 170.4 | 205.6 | 99.999458305 | 184606 |
165 | 169.3 | 204.0 | 99.999265108 | 136074 |
164 | 168.3 | 202.4 | 99.999007244 | 100730 |
163 | 167.2 | 200.8 | 99.998664590 | 74883 |
162 | 166.1 | 199.2 | 99.998211284 | 55906 |
161 | 165.1 | 197.6 | 99.997614249 | 41916 |
160 | 164.0 | 196.0 | 99.996831397 | 31560 |
159 | 162.9 | 194.4 | 99.995809441 | 23863 |
158 | 161.9 | 192.8 | 99.994481264 | 18120 |
157 | 160.8 | 191.2 | 99.992762757 | 13817 |
156 | 159.7 | 189.6 | 99.990549055 | 10581 |
155 | 158.7 | 188.0 | 99.987710103 | 8137 |
154 | 157.6 | 186.4 | 99.984085429 | 6284 |
153 | 156.5 | 184.8 | 99.979478076 | 4873 |
152 | 155.5 | 183.2 | 99.973647581 | 3795 |
151 | 154.4 | 181.6 | 99.966301918 | 2968 |
150 | 153.3 | 180.0 | 99.957088347 | 2330 |
149 | 152.3 | 178.4 | 99.945583088 | 1838 |
148 | 151.2 | 176.8 | 99.931279792 | 1455 |
147 | 150.1 | 175.2 | 99.913576780 | 1157 |
146 | 149.1 | 173.6 | 99.891763076 | 924 |
145 | 148.0 | 172.0 | 99.865003278 | 741 |
144 | 146.9 | 170.4 | 99.832321371 | 596 |
143 | 145.9 | 168.8 | 99.792583648 | 482 |
142 | 144.8 | 167.2 | 99.744480936 | 391 |
141 | 143.7 | 165.6 | 99.686510429 | 319 |
140 | 142.7 | 164.0 | 99.616957487 | 261 |
139 | 141.6 | 162.4 | 99.533877822 | 215 |
138 | 140.5 | 160.8 | 99.435080596 | 177 |
137 | 139.5 | 159.2 | 99.318113022 | 147 |
136 | 138.4 | 157.6 | 99.180247113 | 122 |
135 | 137.3 | 156.0 | 99.018469315 | 102 |
134 | 136.3 | 154.4 | 98.829473782 | 85.4 |
133 | 135.2 | 152.8 | 98.609660109 | 71.9 |
132 | 134.1 | 151.2 | 98.355136322 | 60.8 |
131 | 133.1 | 149.6 | 98.061727929 | 51.6 |
130 | 132.0 | 148.0 | 97.724993796 | 44.0 |
129 | 130.9 | 146.4 | 97.340249507 | 37.6 |
128 | 129.9 | 144.8 | 96.902598793 | 32.3 |
127 | 128.8 | 143.2 | 96.406973449 | 27.8 |
126 | 127.7 | 141.6 | 95.848181971 | 24.1 |
125 | 126.7 | 140.0 | 95.220966959 | 20.9 |
124 | 125.6 | 138.4 | 94.520071055 | 18.2 |
123 | 124.5 | 136.8 | 93.740310935 | 16.0 |
122 | 123.5 | 135.2 | 92.876658598 | 14.0 |
121 | 122.4 | 133.6 | 91.924328874 | 12.4 |
120 | 121.3 | 132.0 | 90.878871803 | 11.0 |
119 | 120.3 | 130.4 | 89.736268244 | 9.7 |
118 | 119.2 | 128.8 | 88.493026828 | 8.69 |
117 | 118.1 | 127.2 | 87.146280129 | 7.78 |
116 | 117.1 | 125.6 | 85.693877763 | 6.99 |
115 | 116.0 | 124.0 | 84.134474024 | 6.30 |
114 | 114.9 | 122.4 | 82.467607585 | 5.70 |
113 | 113.9 | 120.8 | 80.693770846 | 5.18 |
112 | 112.8 | 119.2 | 78.814466606 | 4.72 |
111 | 111.7 | 117.6 | 76.832249920 | 4.32 |
110 | 110.7 | 116.0 | 74.750753266 | 3.96 |
109 | 109.6 | 114.4 | 72.574693506 | 3.65 |
108 | 108.5 | 112.8 | 70.309859498 | 3.37 |
107 | 107.5 | 111.2 | 67.963079707 | 3.12 |
106 | 106.4 | 109.6 | 65.542169659 | 2.90 |
105 | 105.3 | 108.0 | 63.055859579 | 2.71 |
104 | 104.3 | 106.4 | 60.513703143 | 2.53 |
103 | 103.2 | 104.8 | 57.925968717 | 2.38 |
102 | 102.1 | 103.2 | 55.303515008 | 2.24 |
101 | 101.1 | 101.6 | 52.657653447 | 2.11 |
100 | 100.0 | 100.0 | 50 | 2 |
99 | 98.9 | 98.4 | 47.342346553 | 1.899 |
98 | 97.9 | 96.8 | 44.696484992 | 1.808 |
97 | 96.8 | 95.2 | 42.074031283 | 1.726 |
96 | 95.7 | 93.6 | 39.486296857 | 1.653 |
95 | 94.7 | 92.0 | 36.944140421 | 1.586 |
94 | 93.6 | 90.4 | 34.457830341 | 1.526 |
93 | 92.5 | 88.8 | 32.036920293 | 1.471 |
92 | 91.5 | 87.2 | 29.690140502 | 1.422 |
91 | 90.4 | 85.6 | 27.425306494 | 1.378 |
90 | 89.3 | 84.0 | 25.249246734 | 1.338 |
89 | 88.3 | 82.4 | 23.167750080 | 1.302 |
88 | 87.2 | 80.8 | 21.185533394 | 1.269 |
87 | 86.1 | 79.2 | 19.306229154 | 1.239 |
86 | 85.1 | 77.6 | 17.532392415 | 1.213 |
85 | 84.0 | 76.0 | 15.865525976 | 1.189 |
84 | 82.9 | 74.4 | 14.306122237 | 1.167 |
83 | 81.9 | 72.8 | 12.853719871 | 1.147 |
82 | 80.8 | 71.2 | 11.506973172 | 1.130 |
81 | 79.7 | 69.6 | 10.263731756 | 1.114 |
80 | 78.7 | 68.0 | 9.121128197 | 1.100 |
79 | 77.6 | 66.4 | 8.075671126 | 1.088 |
78 | 76.5 | 64.8 | 7.123341402 | 1.077 |
77 | 75.5 | 63.2 | 6.259689065 | 1.067 |
76 | 74.4 | 61.6 | 5.479928945 | 1.058 |
75 | 73.3 | 60.0 | 4.779033041 | 1.050 |
74 | 72.3 | 58.4 | 4.151818029 | 1.043 |
73 | 71.2 | 56.8 | 3.593026551 | 1.0373 |
72 | 70.1 | 55.2 | 3.097401207 | 1.0320 |
71 | 69.1 | 53.6 | 2.659750493 | 1.0273 |
70 | 68.0 | 52.0 | 2.275006204 | 1.0233 |
69 | 66.9 | 50.4 | 1.938272071 | 1.0198 |
68 | 65.9 | 48.8 | 1.644863678 | 1.0167 |
67 | 64.8 | 47.2 | 1.390339891 | 1.0141 |
66 | 63.7 | 45.6 | 1.170526218 | 1.0118 |
65 | 62.7 | 44.0 | 0.981530685 | 1.0099 |
64 | 61.6 | 42.4 | 0.819752887 | 1.0083 |
63 | 60.5 | 40.8 | 0.681886978 | 1.0069 |
62 | 59.5 | 39.2 | 0.564919404 | 1.0057 |
61 | 58.4 | 37.6 | 0.466122178 | 1.0047 |
60 | 57.3 | 36.0 | 0.383042513 | 1.0038 |
59 | 56.3 | 34.4 | 0.313489571 | 1.0031 |
58 | 55.2 | 32.8 | 0.255519064 | 1.0026 |
57 | 54.1 | 31.2 | 0.207416352 | 1.0021 |
56 | 53.1 | 29.6 | 0.167678629 | 1.0017 |
55 | 52.0 | 28.0 | 0.134996722 | 1.0014 |
54 | 50.9 | 26.4 | 0.108236924 | 1.0011 |
53 | 49.9 | 24.8 | 0.086423220 | 1.00086 |
52 | 48.8 | 23.2 | 0.068720208 | 1.00069 |
51 | 47.7 | 21.6 | 0.054416912 | 1.00054 |
50 | 46.7 | 20.0 | 0.042911653 | 1.00043 |
49 | 45.6 | 18.4 | 0.033698082 | 1.00034 |
48 | 44.5 | 16.8 | 0.026352419 | 1.00026 |
47 | 43.5 | 15.2 | 0.020521924 | 1.00021 |
46 | 42.4 | 13.6 | 0.015914571 | 1.00016 |
45 | 41.3 | 12.0 | 0.012289897 | 1.00012 |
44 | 40.3 | 10.4 | 0.009450945 | 1.00009451838 |
43 | 39.2 | 8.8 | 0.007237243 | 1.00007237767 |
42 | 38.1 | 7.2 | 0.005518736 | 1.00005519040 |
41 | 37.1 | 5.6 | 0.004190559 | 1.00004190735 |
40 | 36.0 | 4.0 | 0.003168603 | 1.00003168704 |
39 | 34.9 | 2.4 | 0.002385751 | 1.00002385808 |
38 | 33.9 | 0.8 | 0.001788716 | 1.00001788748 |
37 | 32.8 | NA | 0.001335410 | 1.00001335428 |
36 | 31.7 | NA | 0.000992756 | 1.00000992766 |
35 | 30.7 | NA | 0.000734892 | 1.00000734897 |
34 | 29.6 | NA | 0.000541695 | 1.00000541698 |
33 | 28.5 | NA | 0.000397590 | 1.00000397592 |
32 | 27.5 | NA | 0.000290579 | 1.00000290580 |
31 | 26.4 | NA | 0.000211464 | 1.00000211465 |
30 | 25.3 | NA | 0.000153234 | 1.00000153234 |
29 | 24.3 | NA | 0.000110564 | 1.00000110564 |
28 | 23.2 | NA | 0.000079435 | 1.00000079435 |
27 | 22.1 | NA | 0.000056827 | 1.00000056827 |
26 | 21.1 | NA | 0.000040479 | 1.00000040479 |
25 | 20.0 | NA | 0.000028710 | 1.00000028711 |
24 | 18.9 | NA | 0.000020276 | 1.00000020276 |
23 | 17.9 | NA | 0.000014258 | 1.00000014258 |
22 | 16.8 | NA | 0.000009983 | 1.00000009983 |
21 | 15.7 | NA | 0.000006960 | 1.00000006960 |
20 | 14.7 | NA | 0.000004832 | 1.00000004832 |
19 | 13.6 | NA | 0.000003340 | 1.00000003340 |
18 | 12.5 | NA | 0.000002298 | 1.00000002298 |
17 | 11.5 | NA | 0.000001575 | 1.00000001575 |
16 | 10.4 | NA | 0.000001075 | 1.00000001075 |
15 | 9.3 | NA | 0.000000730 | 1.00000000730 |
14 | 8.3 | NA | 0.000000494 | 1.00000000494 |
13 | 7.2 | NA | 0.000000333 | 1.00000000333 |
12 | 6.1 | NA | 0.000000223 | 1.00000000223 |
11 | 5.1 | NA | 0.000000149 | 1.00000000149 |
10 | 4.0 | NA | 0.000000099 | 1.00000000099 |
9 | 2.9 | NA | 0.000000066 | 1.00000000066 |
8 | 1.9 | NA | 0.000000043 | 1.00000000043 |
7 | 0.8 | NA | 0.000000028 | 1.00000000028 |
6 | NA | NA | 0.000000019 | 1.00000000019 |
5 | NA | NA | 0.000000012 | 1.00000000012 |
4 | NA | NA | 0.000000008 | 1.000000000078 |
3 | NA | NA | 0.000000005 | 1.000000000050 |
2 | NA | NA | 0.000000003 | 1.000000000032 |
1 | NA | NA | 0.000000002 | 1.000000000021 |
IQ SD15 | IQ SD16 | IQ SD24 | Percentile | Rarity 1/X |

132 IQ

117 IQ

189 IQ

143 IQ

173 IQ

157 IQ

186 IQ

160 IQ

135 IQ

134 IQ

135 IQ

138 IQ