In a world that increasingly values cognitive ability and critical thinking skills, knowing your Intelligence Quotient (IQ) isn’t just a fascinating fact about yourself — it’s a crucial stepping-stone...
IQ to Percentile Conversion

IQ tests are designed and updated on a regular basis such that they correspond to the populations they measure in a precise way: a score of 100 is the average score of the population and the distribution of IQ scores has a normal shape with a standard deviation of 15. Therefore, the IQ score is convenient to interpret and work with if you are a statistician, but if you are not into statistics the number itself will likely mean little to you. This is where our IQ percentile calculator can assist you in computing both the percentile of the population you are in and, correspondingly, the rarity of your score.
The Basics of IQ Score Interpretation
The table below provides IQ to percentile conversion formula. There are three different standard deviations used to IQ measurement: standard deviation of 15 (e.g. Wechsler scale), SD16 (e.g. Stanford-Binet scale) and less frequently used SD24 (e.g. Catell scale). Please note that IQ of 196 with SD15 represents one person out of 12 billion. This translates to an IQ of 202 on SD16 and IQ of 253 on SD24. So if an online IQ tests claims your IQ to be more than 200, it is probably not accurate.
IQ Percentage and Rarity Chart
IQ SD15 | IQ SD16 | IQ SD24 | Percentile | Rarity 1/X |
---|---|---|---|---|
196 | 202.4 | 253.6 | 99.999999992 | 12812462045 |
195 | 201.3 | 252.0 | 99.999999988 | 8299133761 |
194 | 200.3 | 250.4 | 99.999999981 | 5399067340 |
193 | 199.2 | 248.8 | 99.999999972 | 3527693270 |
192 | 198.1 | 247.2 | 99.999999957 | 2314980850 |
191 | 197.1 | 245.6 | 99.999999934 | 1525765721 |
190 | 196.0 | 244.0 | 99.999999901 | 1009976678 |
189 | 194.9 | 242.4 | 99.999999851 | 671455130 |
188 | 193.9 | 240.8 | 99.999999777 | 448336263 |
187 | 192.8 | 239.2 | 99.999999667 | 300656786 |
186 | 191.7 | 237.6 | 99.999999506 | 202496482 |
185 | 190.7 | 236.0 | 99.999999270 | 136975305 |
184 | 189.6 | 234.4 | 99.999998925 | 93056001 |
183 | 188.5 | 232.8 | 99.999998425 | 63492547 |
182 | 187.5 | 231.2 | 99.999997702 | 43508721 |
181 | 186.4 | 229.6 | 99.999996660 | 29943596 |
180 | 185.3 | 228.0 | 99.999995168 | 20696863 |
179 | 184.3 | 226.4 | 99.999993040 | 14367357 |
178 | 183.2 | 224.8 | 99.999990017 | 10016587 |
177 | 182.1 | 223.2 | 99.999985742 | 7013455 |
176 | 181.1 | 221.6 | 99.999979724 | 4931877 |
175 | 180.0 | 220.0 | 99.999971290 | 3483046 |
174 | 178.9 | 218.4 | 99.999959521 | 2470424 |
173 | 177.9 | 216.8 | 99.999943173 | 1759737 |
172 | 176.8 | 215.2 | 99.999920565 | 1258887 |
171 | 175.7 | 213.6 | 99.999889436 | 904454 |
170 | 174.7 | 212.0 | 99.999846766 | 652598 |
169 | 173.6 | 210.4 | 99.999788536 | 472893 |
168 | 172.5 | 208.8 | 99.999709421 | 344141 |
167 | 171.5 | 207.2 | 99.999602410 | 251515 |
166 | 170.4 | 205.6 | 99.999458305 | 184606 |
165 | 169.3 | 204.0 | 99.999265108 | 136074 |
164 | 168.3 | 202.4 | 99.999007244 | 100730 |
163 | 167.2 | 200.8 | 99.998664590 | 74883 |
162 | 166.1 | 199.2 | 99.998211284 | 55906 |
161 | 165.1 | 197.6 | 99.997614249 | 41916 |
160 | 164.0 | 196.0 | 99.996831397 | 31560 |
159 | 162.9 | 194.4 | 99.995809441 | 23863 |
158 | 161.9 | 192.8 | 99.994481264 | 18120 |
157 | 160.8 | 191.2 | 99.992762757 | 13817 |
156 | 159.7 | 189.6 | 99.990549055 | 10581 |
155 | 158.7 | 188.0 | 99.987710103 | 8137 |
154 | 157.6 | 186.4 | 99.984085429 | 6284 |
153 | 156.5 | 184.8 | 99.979478076 | 4873 |
152 | 155.5 | 183.2 | 99.973647581 | 3795 |
151 | 154.4 | 181.6 | 99.966301918 | 2968 |
150 | 153.3 | 180.0 | 99.957088347 | 2330 |
149 | 152.3 | 178.4 | 99.945583088 | 1838 |
148 | 151.2 | 176.8 | 99.931279792 | 1455 |
147 | 150.1 | 175.2 | 99.913576780 | 1157 |
146 | 149.1 | 173.6 | 99.891763076 | 924 |
145 | 148.0 | 172.0 | 99.865003278 | 741 |
144 | 146.9 | 170.4 | 99.832321371 | 596 |
143 | 145.9 | 168.8 | 99.792583648 | 482 |
142 | 144.8 | 167.2 | 99.744480936 | 391 |
141 | 143.7 | 165.6 | 99.686510429 | 319 |
140 | 142.7 | 164.0 | 99.616957487 | 261 |
139 | 141.6 | 162.4 | 99.533877822 | 215 |
138 | 140.5 | 160.8 | 99.435080596 | 177 |
137 | 139.5 | 159.2 | 99.318113022 | 147 |
136 | 138.4 | 157.6 | 99.180247113 | 122 |
135 | 137.3 | 156.0 | 99.018469315 | 102 |
134 | 136.3 | 154.4 | 98.829473782 | 85.4 |
133 | 135.2 | 152.8 | 98.609660109 | 71.9 |
132 | 134.1 | 151.2 | 98.355136322 | 60.8 |
131 | 133.1 | 149.6 | 98.061727929 | 51.6 |
130 | 132.0 | 148.0 | 97.724993796 | 44.0 |
129 | 130.9 | 146.4 | 97.340249507 | 37.6 |
128 | 129.9 | 144.8 | 96.902598793 | 32.3 |
127 | 128.8 | 143.2 | 96.406973449 | 27.8 |
126 | 127.7 | 141.6 | 95.848181971 | 24.1 |
125 | 126.7 | 140.0 | 95.220966959 | 20.9 |
124 | 125.6 | 138.4 | 94.520071055 | 18.2 |
123 | 124.5 | 136.8 | 93.740310935 | 16.0 |
122 | 123.5 | 135.2 | 92.876658598 | 14.0 |
121 | 122.4 | 133.6 | 91.924328874 | 12.4 |
120 | 121.3 | 132.0 | 90.878871803 | 11.0 |
119 | 120.3 | 130.4 | 89.736268244 | 9.7 |
118 | 119.2 | 128.8 | 88.493026828 | 8.69 |
117 | 118.1 | 127.2 | 87.146280129 | 7.78 |
116 | 117.1 | 125.6 | 85.693877763 | 6.99 |
115 | 116.0 | 124.0 | 84.134474024 | 6.30 |
114 | 114.9 | 122.4 | 82.467607585 | 5.70 |
113 | 113.9 | 120.8 | 80.693770846 | 5.18 |
112 | 112.8 | 119.2 | 78.814466606 | 4.72 |
111 | 111.7 | 117.6 | 76.832249920 | 4.32 |
110 | 110.7 | 116.0 | 74.750753266 | 3.96 |
109 | 109.6 | 114.4 | 72.574693506 | 3.65 |
108 | 108.5 | 112.8 | 70.309859498 | 3.37 |
107 | 107.5 | 111.2 | 67.963079707 | 3.12 |
106 | 106.4 | 109.6 | 65.542169659 | 2.90 |
105 | 105.3 | 108.0 | 63.055859579 | 2.71 |
104 | 104.3 | 106.4 | 60.513703143 | 2.53 |
103 | 103.2 | 104.8 | 57.925968717 | 2.38 |
102 | 102.1 | 103.2 | 55.303515008 | 2.24 |
101 | 101.1 | 101.6 | 52.657653447 | 2.11 |
100 | 100.0 | 100.0 | 50 | 2 |
99 | 98.9 | 98.4 | 47.342346553 | 1.899 |
98 | 97.9 | 96.8 | 44.696484992 | 1.808 |
97 | 96.8 | 95.2 | 42.074031283 | 1.726 |
96 | 95.7 | 93.6 | 39.486296857 | 1.653 |
95 | 94.7 | 92.0 | 36.944140421 | 1.586 |
94 | 93.6 | 90.4 | 34.457830341 | 1.526 |
93 | 92.5 | 88.8 | 32.036920293 | 1.471 |
92 | 91.5 | 87.2 | 29.690140502 | 1.422 |
91 | 90.4 | 85.6 | 27.425306494 | 1.378 |
90 | 89.3 | 84.0 | 25.249246734 | 1.338 |
89 | 88.3 | 82.4 | 23.167750080 | 1.302 |
88 | 87.2 | 80.8 | 21.185533394 | 1.269 |
87 | 86.1 | 79.2 | 19.306229154 | 1.239 |
86 | 85.1 | 77.6 | 17.532392415 | 1.213 |
85 | 84.0 | 76.0 | 15.865525976 | 1.189 |
84 | 82.9 | 74.4 | 14.306122237 | 1.167 |
83 | 81.9 | 72.8 | 12.853719871 | 1.147 |
82 | 80.8 | 71.2 | 11.506973172 | 1.130 |
81 | 79.7 | 69.6 | 10.263731756 | 1.114 |
80 | 78.7 | 68.0 | 9.121128197 | 1.100 |
79 | 77.6 | 66.4 | 8.075671126 | 1.088 |
78 | 76.5 | 64.8 | 7.123341402 | 1.077 |
77 | 75.5 | 63.2 | 6.259689065 | 1.067 |
76 | 74.4 | 61.6 | 5.479928945 | 1.058 |
75 | 73.3 | 60.0 | 4.779033041 | 1.050 |
74 | 72.3 | 58.4 | 4.151818029 | 1.043 |
73 | 71.2 | 56.8 | 3.593026551 | 1.0373 |
72 | 70.1 | 55.2 | 3.097401207 | 1.0320 |
71 | 69.1 | 53.6 | 2.659750493 | 1.0273 |
70 | 68.0 | 52.0 | 2.275006204 | 1.0233 |
69 | 66.9 | 50.4 | 1.938272071 | 1.0198 |
68 | 65.9 | 48.8 | 1.644863678 | 1.0167 |
67 | 64.8 | 47.2 | 1.390339891 | 1.0141 |
66 | 63.7 | 45.6 | 1.170526218 | 1.0118 |
65 | 62.7 | 44.0 | 0.981530685 | 1.0099 |
64 | 61.6 | 42.4 | 0.819752887 | 1.0083 |
63 | 60.5 | 40.8 | 0.681886978 | 1.0069 |
62 | 59.5 | 39.2 | 0.564919404 | 1.0057 |
61 | 58.4 | 37.6 | 0.466122178 | 1.0047 |
60 | 57.3 | 36.0 | 0.383042513 | 1.0038 |
59 | 56.3 | 34.4 | 0.313489571 | 1.0031 |
58 | 55.2 | 32.8 | 0.255519064 | 1.0026 |
57 | 54.1 | 31.2 | 0.207416352 | 1.0021 |
56 | 53.1 | 29.6 | 0.167678629 | 1.0017 |
55 | 52.0 | 28.0 | 0.134996722 | 1.0014 |
54 | 50.9 | 26.4 | 0.108236924 | 1.0011 |
53 | 49.9 | 24.8 | 0.086423220 | 1.00086 |
52 | 48.8 | 23.2 | 0.068720208 | 1.00069 |
51 | 47.7 | 21.6 | 0.054416912 | 1.00054 |
50 | 46.7 | 20.0 | 0.042911653 | 1.00043 |
49 | 45.6 | 18.4 | 0.033698082 | 1.00034 |
48 | 44.5 | 16.8 | 0.026352419 | 1.00026 |
47 | 43.5 | 15.2 | 0.020521924 | 1.00021 |
46 | 42.4 | 13.6 | 0.015914571 | 1.00016 |
45 | 41.3 | 12.0 | 0.012289897 | 1.00012 |
44 | 40.3 | 10.4 | 0.009450945 | 1.00009451838 |
43 | 39.2 | 8.8 | 0.007237243 | 1.00007237767 |
42 | 38.1 | 7.2 | 0.005518736 | 1.00005519040 |
41 | 37.1 | 5.6 | 0.004190559 | 1.00004190735 |
40 | 36.0 | 4.0 | 0.003168603 | 1.00003168704 |
39 | 34.9 | 2.4 | 0.002385751 | 1.00002385808 |
38 | 33.9 | 0.8 | 0.001788716 | 1.00001788748 |
37 | 32.8 | NA | 0.001335410 | 1.00001335428 |
36 | 31.7 | NA | 0.000992756 | 1.00000992766 |
35 | 30.7 | NA | 0.000734892 | 1.00000734897 |
34 | 29.6 | NA | 0.000541695 | 1.00000541698 |
33 | 28.5 | NA | 0.000397590 | 1.00000397592 |
32 | 27.5 | NA | 0.000290579 | 1.00000290580 |
31 | 26.4 | NA | 0.000211464 | 1.00000211465 |
30 | 25.3 | NA | 0.000153234 | 1.00000153234 |
29 | 24.3 | NA | 0.000110564 | 1.00000110564 |
28 | 23.2 | NA | 0.000079435 | 1.00000079435 |
27 | 22.1 | NA | 0.000056827 | 1.00000056827 |
26 | 21.1 | NA | 0.000040479 | 1.00000040479 |
25 | 20.0 | NA | 0.000028710 | 1.00000028711 |
24 | 18.9 | NA | 0.000020276 | 1.00000020276 |
23 | 17.9 | NA | 0.000014258 | 1.00000014258 |
22 | 16.8 | NA | 0.000009983 | 1.00000009983 |
21 | 15.7 | NA | 0.000006960 | 1.00000006960 |
20 | 14.7 | NA | 0.000004832 | 1.00000004832 |
19 | 13.6 | NA | 0.000003340 | 1.00000003340 |
18 | 12.5 | NA | 0.000002298 | 1.00000002298 |
17 | 11.5 | NA | 0.000001575 | 1.00000001575 |
16 | 10.4 | NA | 0.000001075 | 1.00000001075 |
15 | 9.3 | NA | 0.000000730 | 1.00000000730 |
14 | 8.3 | NA | 0.000000494 | 1.00000000494 |
13 | 7.2 | NA | 0.000000333 | 1.00000000333 |
12 | 6.1 | NA | 0.000000223 | 1.00000000223 |
11 | 5.1 | NA | 0.000000149 | 1.00000000149 |
10 | 4.0 | NA | 0.000000099 | 1.00000000099 |
9 | 2.9 | NA | 0.000000066 | 1.00000000066 |
8 | 1.9 | NA | 0.000000043 | 1.00000000043 |
7 | 0.8 | NA | 0.000000028 | 1.00000000028 |
6 | NA | NA | 0.000000019 | 1.00000000019 |
5 | NA | NA | 0.000000012 | 1.00000000012 |
4 | NA | NA | 0.000000008 | 1.000000000078 |
3 | NA | NA | 0.000000005 | 1.000000000050 |
2 | NA | NA | 0.000000003 | 1.000000000032 |
1 | NA | NA | 0.000000002 | 1.000000000021 |
IQ SD15 | IQ SD16 | IQ SD24 | Percentile | Rarity 1/X |

169 IQ

127 IQ

175 IQ

189 IQ

142 IQ

148 IQ

160 IQ

134 IQ

139 IQ

143 IQ

104 IQ

186 IQ